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A very simple dynamical system with one degree of freedom, controlled by a force of bounded magnitude, is considered. It is 
assumed that the magnitude of the force may increase gradually at a finite rate and that the force is switched off instantaneously. 
Under these restrictions, which simulate real servo-systems, a control is constructed that steers the system to the origin and has 
the simplest possible structure. © 2000 Elsevier Science Ltd. All rights reserved. 

1. F O R M U L A T I O N  OF T H E  P R O B L E M  

The simplest dynamical system with one degree of freedom, described by Newton's Second Law, has 
often served as a model in control theory [1, 2]. On the one hand, this model has been used to work 
out and demonstrate  schemes and methods for solving control problems. On the other, a system with 
one degree of f reedom has been used as an element in certain schemes for decomposing non-linear 
systems with many degrees of  f reedom into simpler subsystems [3, 4]. 

Consider a system with one degree of f reedom of the form 

m~ = F (1.1) 

where ~ is a coordinate, m is the constant mass of  the system, the dots denote differentiation with respect 
to time t and F is a controlling force subject to the restriction 

IFI ~< F o (1.2) 

where F0 is a constant. Let  us consider the problem of bringing system (1.1) to the origin of  the phase 
plane, that is, to the state ~ = ~ = 0. I f  no restrictions other than (1.2) are imposed on the system, then 
a time-optimal control solving this problem is well known [1] and is a bang-bang control with at most  
one switching. The typical t ime-dependence of this control is shown in Fig. 1. The control forces may 
be switched on and off  instantaneously. 

In actual servo-systems that implement  control impulses, instantaneous variation of a force is 
frequently impossible. If  allowance is made for the fact that the magnitude of the force may change at 
a finite rate, we arrive at the restriction 

I P v0 (1.3) 
where ~0 is a constant. 

A solution of the problem of synthesizing a time-optimal control for system (1.1) subject to condition 
(1.3) for the zero terminal state ~ = ~ = 0 was obtained in [5]. In that solution, restriction (1.2) on the 
magnitude of the force was not taken into consideration, that is, it was assumed that it was not achieved. 
As to the t ime-optimal control problem for system (1.1) taking both restrictions (1.2) and (1.3) into 
account, we have not come upon any solution in the literature. 

The control problem for system (1.1) will be treated in the following formulation. It is assumed that 
the control force is bounded as in (1.2), while condition (1.3) will only be satisfied when the magnitude 
of the force increases, that is, when dlFI /d t  > 0. At the same time, the force may be switched off 
instantaneously. These restrictions may be written as a system of inequalities 

IFI~<F0;  ~'~<v 0 if F ~ 0 ,  / ~ > - v  0 if F~<0 (1.4) 
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For the domain defined by inequalities (1.4) in the (F,/~) plane, see Fig. 2. 
Conditions (1.4) simulate the following situation: the control force may be increased only gradually, 

at a finite rate, but it can be switched off instantaneously. This is not infrequently the case in practice, 
since deceleration is often implemented by means other than acceleration. 

We introduce the following dimensionless variables 

t'=voFolt, x=mv2oFo3~, y=mvoFo2~, z=FolF, U=Vol[ 7 (1.5) 

Equation (1.1) and conditions (1.4) take the following form in terms of these new variables 

- /=y,  ~=z ,  ~ = u  (1.6) 

Izl~<l; u~<l if z~>0, u>~-I  if z~<0 (1.7) 

Throughout this paper, dots denote differentiation with respect to the new (dimensionless) time. The 
prime indicating dimensionless time will be omitted from now on. 

The initial conditions for system (1.6) are 

x(0) =x0, y(0) =Y0, z(0) = 0 (1.8) 

and the final state is 

x(T) = 0, y(T) = 0 (1.9) 

Note that the value ofz(T) at a finite time may always be made equal to zero by adjusting the jump 
of the force z(t) at time t = T, which is done by conditions (1.7). We may therefore assume throughout 
that z(T) = 0. 

We now formulate the following problem. 
It is required to find a control u(t) and the corresponding trajectory, that is, functions x(t), y(t) and 

z(t) satisfying Eqs (1.6), conditions (1.7), initial conditions (1.8) and final conditions (1.9) at some (non- 
fixed) time T > 0. 

Henceforth we will construct a solution that solves the problem and has the simplest structure satisfying 
conditions (1.7). This control is obviously time-optimal. 

2. TYPES OF S O L U T I O N  

The possible forms of variation of the dimensionless force z(t) are shown in Fig. 3. The figure shows 
the intervals in which the force increases or decreases gradually, ~? = ___1 and the intervals over which 
the force is constant, z = +_ 1. These forms have the following properties. 

1. At the beginning of the process, z(0) = 0, in accordance with initial conditions (1.8). 
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2. Forms 1--6 satisfy conditions (1.7). 
3. Just before the end of the process, z(t) < 0 as t ---) T. This condition is assumed for definiteness 

and does not affect the generality of our solution, since, besides the forms illustrated in Fig. 3, we might 
have similarly considered their mirror images in the t axis, namely, z'(t) = -z(t). 

4. The variations shown in Fig. 3 have at most one jump and one change in the sign of the force z(t). 
5. Form 6 of Fig. 3 is a direct extension of the bang-bang form of Fig. 1 to the case of gradual increase 

of the magnitude of the force, that is, to the case of conditions (1.7). 
6. Forms 1-5 of Fig. 3 are special cases of 6. Indeed, in 5 the bound z = -1 is not achieved; in 4 the 

bound z = 1 is not achieved; in 3 neither bound z = __+1 is achieved; in 1 and 2 there is no jump in the 
function z(t), the bound z = -1 being achieved in 2 but not in 1. 

As will be shown below, using forms of variation of types 1-6 for z(t), as well as their mirror-image 
laws z'(t) = -z(t),  one can steer system (1.6) from any initial state (1.8) to the final state (1.9). 

We now introduce a domain D in the xy plane, define by the inequalities 

x < -go(-y) if y ~< 0 
D =  (x,y):  (2.1) 

x~<go(y) if y > 0  

Define a function go(y) as follows: 

= /  - (2Y)~ /3  if 0~<y~< 
go(Y) ( l 1 2 4 - y / 2 - y 2 1 2  if y ~ > ~  

(2.2) 

It is not difficult to verify that these relations define g0(y) as a smooth function, decreasing 
monotonically from 0 to --~ over the non-negative real line y e [0, ~). At the point y = 1/2 we have 
go(y) = -1/3. go'(y) = -1. 

The curves F and F" defined fory/>  0 andy ~< 0 by the formulaex = go(y) andx = -go(-y), respectively, 
are shown in Fig. 4 (thicker curves). We also show on these curves, which are symmetrical to one another 
about the origin, the pointsA = (-1/3, 1/2) andA" = (1/3, -1/2) at which the sections defined by formulae 
(2.2) meet smoothly. 

The curves F and I" form the boundary of the domain D; according to (2.1), F, which lies in the second 
quadrant of the xy plane, belongs to D, while F', which lies in the fourth quadrant, is not contained in 
D. The union of the domain D with the domain D', symmetric to it with respect to the origin, gives the 
whole xy plane punctured at the origin O. By (1.9), O is the final point and is therefore of no interest 
as an initial point: i fx = y = 0 at time t = 0, a control process is needless. 

Below we will construct a control and trajectories, that is, functions u(t),x(t),y(t), z(t), for all initial points 
(x0, Y0) ~ D. But if (x0, Y0) ~ D', the required solution will be given by functions {-u(t), -x(t), -y(t), -z(t)}, 
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where the triple {u(t), x(t), y(t), z(t)} is the solution for the initial point (-x0, -Y0) e D symmetric to 
(x0, Y0) e D'. Then Eqs (1.6) and conditions (1.7) will be satisfied, the trajectories emanating from 
(x0, Y0) e D'  will be symmetric to the trajectories from the point (-x0, -Y0) e D and will also lead to the 
origin--moreover, in the same time. 

Thus, it will suffice to solve the control problem as formulated for an initial point (xo, Yo) ~ D. This 
will be done with the help of the variations 1-6 shown in Fig. 3. 

3. C O N S T R U C T I O N  OF T H E  T R A J E C T O R I E S  

We will construct appropriate trajectories for each of variations 1-6 in Fig. 3 and determine the 
domains D i (i = 1, . . . , 6) of initial data x0, Y0 in the domain D from which the variation in question 
steers the system to the final statex(T) = y(T) = 0. The sets Di are indicated in Fig. 4 by the corresponding 
digits i = 1 . . . . .  6. 

Variation 1. By Fig. 3, u = -1 for t e [0, 7]. Integrating Eqs (1.6) for initial data (1.8), we obtain 

u = - l ,  z=- t ,  y = y o - t 2 / 2 ,  X=xo+yo t - t3 /6  (3.1) 

Set t = T in formulae (3.1) and substitute the results into the final conditions (1.9). Eliminating T, 
we obtain 

T = (2Y0) ~ < 1 (3.2) 

x 0 = - (2y  o)~ / 3 (3.3) 

The inequality T < 1 follows from the fact that the bound z = -1 is not achieved in variation 1; see 
Fig. 3. Relations (3.2) and (3.3) imply the inequalities 

- ~ < x 0  <0 , 0<y0<  ~ (3.4) 

Thus, variation 1, defined by (3.1), is implemented if the initial point (Xo, Yo) lies on an arc of the 
curve defined by Eq. (3.3) and inequalities (3.4). Consequently, the set D1 is the arc of the curve F (see 
(2.2)) indicated by the numeral 1 in Fig. 4, enclosed between the points O andA = (-1/3, 1/2). All phase 
trajectories beginning on this arc will ultimately lead to the origin if variation 1 is applied. The trajectories 
are defined by (3.1) and the duration of the motion by (3.2). It is easily verified that all these trajectories 
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lie in the domain between the curve F and the parabola F0 defined by the formulae 

F 0 : x = ~ 0 ( y ) = - y 2 / 2 ,  y>~O (3.5) 

This parabola F0 is at the same time the switching curve and a phase trajectory leading to the origin 
for the time-optimal problem, if conditions (1.7) are replaced by the simple restriction I z I ~< 1 [1]. 

Variation 2. We have 

u = - l ,  z = - t  if 0 ~ < t < l  

(3.6) 

u = 0 ,  z = - I  if l < t < T  

Motion along the first part of the trajectory (t < 1) is defined by relationships (3.1). We conclude 
from (3.1) that at t = 1 

y(1) = Y0 - ~ ,  x(1) = x 0 + Y0 - ~ (3.7) 

Integrating Eqs (1.6), taking (3.6) and initial data (3.7) in the second part of the motion (t > 1) into 
account, we obtain 

y(t) = y(1) - (t - 1), x(t) = x(1) + y(l)(t - 1) - (t - 1) 2 / 2 (3.8) 

Substitute expressions (3.8) into terminal conditions (1.9) and eliminate T. We obtain 

T= y( l )+ l> l ,  x(l)=-[y(1)] 2 /2  (3.9) 

Thus, the point (x(l), y(1)) lies on the parabola F0 of (3.5), and the second part of the motion (3.6) 
(t ~ [1, T]) takes place along this parabola until the origin is reached. Substituting (3.7) into (3.9), we 
obtain the conditions 

Xo=-y212-Yo12+l124, yo>~ (3.10) 

Formulae (3.10) define the set D2 of initial data for which variation 2 ensures that the system will 
reach the origin. This set D 2 is the part of the curve F (see (2.2)) from the pointA = (-1/3, 1/2) inclusive 
to infinity. All trajectories starting in that set are enclosed between F and U0, with their second parts 
(for t > 1) lying on the parabola F0. Typical trajectories for variations 1 and 2 are shown in Fig. 4 by 
dashed curves. 

Thus, if the initial point (x0, Y0) lies on the curve F, our problem is solved by controls 1 and 2, with 
variation 1 applying if (x0, Y0) is between O and A, and variation 2 if it is to the left of A in Fig. 4. 

We now consider variations 3-6 of Fig. 3, letting 0 denote the time at which the function z(t), 
0 ~ (0, T), experiences a jump. It is not difficult to see that the functions z(t) for t > 0 for all variations 
3-6 of Fig. 3 are identical with z(t) for t > 0 for one of variations 1 or 2: for variations 3 and 5 the 
relevant variation is 1, and for variations 4 and 6 it is 2. Hence the segments of trajectories for 
variations 3-6 for t > 0 coincide with trajectories for one of variations 1 or 2. Consequently, the point 
(x(0), y(0)) for variations 3-6 must belong to the sets of initial data for the appropriate variations 1 or 
2, namely 

(x(0), y(0)) ~ D1 for variations 3, 5 

(3.11) 

(x(0), y(0)) ~ D 2 for variations 4, 6 

To compute the numbers x(0) and y(0), we note that, apart from sign, the variation of z(t) for t < 0 
in cases 3 and 4 is identical with variation 1, and in cases 5 and 6--with variation 2. Therefore, changing 
signs when needed and setting t = 0, we conclude from (3.11) that for variations 3 and 4 

y(O)= yo +02 /2, x(O)= xo + yoO+03 /6, 0<1 (3.12) 

Using formulae (3.7) and (3.8) and proceeding in analogous fashion, we obtain the results for variations 
5 and 6 
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y(0) = y o + ~ + ( 0 - 1 )  = Y0 + 0 - ~  

x(0)= x 0 +Yo +l~+(Yo + ~ ) ( 0 - 1 ) + ( 0 - 1 )  2 /2  = 

= x  0 + y o 0 + 0 2 / 2 - 0 / 2 + ~ ,  01>1 (3.13) 

Let us determine the domains O i in the xy plane containing the initial data x 0, Y0 for the appropriate 
variations, i = 3, 4, 5, 6. To do this, we use formulae (3.11)-(3.13) and the previously presented definitions 
of D1 and D2. 

Variation 3. Substituting expressions (3.12) forx(0),y(0) in place ofx0,Y0 in Eq. (3.3) and inequalities 
(3.4) defining the set D1, we obtain 

x o = -yo 0 -0 3  / 6 -  (2y o + 02)~ /3 (3.14) 

0<2yo +02 <1, 0<0<1  

Let us determine the boundaries of the set D 3 defined parametrically by formulae (3.14). To do this, 
it will suffice to consider four cases, corresponding to equality in each of the four inequalities (3.14). 

We first assume that 2y 0 + 02 = 0. 
Substituting the value of 0 found from this equality into (3.14), we obtain 

x 0 = ( -2yo)~ /3 ,  - ~ < Y o  <0 (3.15) 

By (2.1) and (2.2), formulae (3.15) define a segment of the curve F' from the origin to the point 
A'  = (1/3, 1/2) (see Fig. 4). 

Putting 2y 0 + 02 = 1 and substituting the value of 0 thus determined into (3.14), we obtain 

3 
x o = - ~ - y o ( l - 2 y o ) ~ - ( l - 2 y o ) ~ / 6 ,  0<Yo< ~ (3.16) 

Formulae (3.16) define an arc of a curve F 1 in the xy plane joining the pointsA = (-1/3, 1/2) and 
B = (-1/2, 0). This curve is shown in Fig. 4. 

Setting 0 = 0, we obtain from (3.14) 

3 
x o = - ( 2 y  o )~ /3 ,  0<Yo < 

By (2.2), this segment of the boundary of D 3, coincides with the set D1, that is, with the arc OA of the 
curve F. 

Finally, setting 0 = 1, we obtain from (3.14) 

X o = - ~ - Y o - ( 2 y o + l )  ~ / 3 ,  - ~ < y o < 0  (3.17) 

These formulae define an arc of a curve in the xy plane joining the points B and A'. This curve F2 touches 
the curve F' at the point A" (see Fig. 4). 

Thus, the set D 3 is a curvilinear quadrilateral OABA' bounded by arcs of the curves F (from O toA),  
['1, F2 and 1-" (from A'  to O). 

Variation 4. Substituting expressions (3.12) for x(0), y(0) in plane ofxo, Yo in relations (3.10) defining 
the set D 2, we obtain 

x 0 = 1~4- yo2/2 - y o  02 /2  - yo 0 - Y o / 2  - -0  4 / 8 - - 0  3 / 6 - 0 2 / 4  

2y 0+021>1, 0<0<1  (3.18) 

The boundaries of the set D 4 will be found by replacing the inequality sign in each of the three 
inequalities of (3.18) in turn bzy an equality sign. 

We first assume that 2y0 + 0 = 1, and eliminate 0:0 = (1 - 2y0) 1/2 from the given equality. Substituting 
the resulting value of 0 into (3.18) and simplifying, we obtain the relation defining the arc F1. 

Setting 0 = 0 in (3.18), we obtain, as is easily verified, Eqs (3.10), which define the set D2, that is, 
the arc of the curve F from the point A to infinity. 
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Setting 0 = 1 in (3.18), we have 

Xo=-y~12-2yo-~, yo>~O (3.19) 

The curve 1-" 3 defined by these relations begins at the point B = (-1/2, 0) and goes off to infinity (see 
Fig. 4). 

As a result, the set D 4 is bounded by the set D2, the curve Fl--along which it borders on D3--and 
the curve F3. 

Variation 5. Substituting expressions (3.12) forx(0),y(0) in place ofx0,Y0 in Eq. (3.3) and inequalities 
(3.4) defining the set D1, we obtain 

x 0 = - Y 0 0 - 0 2 / 2 + 0 / 2 - ~ - ( 2 y  o + 2 0 - 1 )  "~/3 

~ < y 0  +0<1, 0 9 1  (3.20) 

We now determine the boundaries of the set Ds, reasoning by analogy with the previous cases and 
replacing each of the three inequalities (3.20) in turn by equalities. 

Settingy0 + 0 = 1/2, we ofind that 0 = 1/2 -Y0. Substituting this value of 0 into equality (3.20), we 
obtain 

xo=Y~12-yo/2-~4, yo <~-~ 

By (2.2), these formulae define the arc of the curve r" from the pointA'  = (1/3, -1/2) to infinity, this 
arc is symmetric to D2 about the origin. 

Settingy0 + 0 = 1, we obtain 0 = 1 -Y0- Substituting this value into equality (3.20), we obtain 

xo=Y~I2-yol2-~,  Yo <-O (3.21) 

Formulae (3.21) define a curve F4 beginning at B = (-1/2, 0) and going off to infinity (see 
Fig. 4). 

Setting 0 = 1 in (3.20), we obtain formulae (3.17) defining the curve F2. 
Thus, the set D 5 is bounded by an arc of the curve Fz--along which it borders on the set D3--the 

curve 1"4 and the arc of the curve 1-" from A" to infinity. 

Variation 6. Substituting expressions (3.13) for x(0), y(0) in place of x0, Y0 in formulae (3.10) defining 
the set D> we obtain 

Xo=-y~12-2YoO-02+OI2, Y0+0~>l, 0>~1 (3.22) 

Replacing the first of inequalities (3.22) by an equality, we obtain 0 = 1 -Y0- Substituting this expression 
into (3.22), we obtain relations (3.21) defining the curve F4. 

Setting 0 = 1 in (3.22), we obtain relations (3.19) defining the curve F 3. 
Thus, the set D 6 borders on the sets D 4 and D5 along the curves F 3 and 1"4, respectively, and lies below 

and to the left of these curves, which have a common point B (-1/2, 0). 
Note that the curves F2 and I"3 have a common tangent at the point B, and the same is true of F 3 

and F 4. 

4. C O N C L U S I O N  

The solution of the control problem as formulated may be described as follows. Given an initial state 
(1.8) in the domain D of the xy plane, we determine to which of the domains Di (i = 1, 2 . . . . .  6) it 
belongs. The boundaries between the domains are given by the curves F, F ' ,  1-'1, F2, F3, F4 defined by 
formulae (2.2), (3.16), (3.17), (3.19) and (3.21). The boundary between D1 and D2 is the point A = 
(-1/3, 1/2). 

1. If (Xo, Yo) ~ D1, then we define u --- -1 for t > 0. The system reaches the given state x = y = 0 in 
a time T < 1. 

2. If (xo, Yo) e D2, we put u = -1 for t ~ (0, 1) and u = 0 for t I> 1. The system reaches the final state 
in a time T ~ 1. 
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3. If (x0, Y0) e 03, then u = 1 for t • (0, 0), where the time 0 < 1 is defined by the condition 
(x(0), y(0)) • D1. At time t = 0 we equate z to zero by a jump, which is admitted by restrictions (1.7). 
At t > 0 we define u = -1 up to the end of the process. The trajectory for t > 0 is the same as for 
variation 1. 

4. If (x0, Y0) • D4, then u = 1 for t • (0, 0), where the time 0 < 1 is defined by the condition (x(0), 
y(0)) • D e. A t  time t = 0 we equate z to zero by a jump. We then define u = -1 for t • (0, 0 + 1) and 
u = 0 f o r t •  ( 0 + 1 , 7 3  . 

5. If (x0, Y0) • Ds, then u = 1 for t • (0, 1) and u = 0 for t • (1, 0), where the time 0 > 1 is defined 
by the condition (x(0),y(0)) • D 1. At time 0 we equate z to zero by a jump. We then define u = -1 for 
t • (0, 73 up to the end of the process. 

6. If (xo, Yo) • D6, then u = 1 for t • (0, 1) and u = 0 for t • (1, 0), where the time 0 > 1 is defined 
by the condition (x(0), y(0)) • D2. At time 0 we equate z to zero by a jump. We then define u = -1 for 
t •  (0 ,0  + 1) a n d u  = 0 fo r t  • (0 + 1, 73. 

Note that T < 1 in case 1, T > 1 in cases 2, 4, 5, and T > 2 in case 6. 
All trajectories beginning in the domain D lie in the domain bounded by the curves F0 and F' (to the 

left of and below those curves; see Fig. 4). They reach the origin O either touching the curve F 0 (for 
laws 1, 3, and 5) or coinciding with F0 over its last part (for variations 2, 4 and 6); see the curves in 
Fig. 4. 

If the initial point (x0, Y0) is in the domain D" symmetric to D about the origin, the control is taken 
equal in magnitude and opposite in sign to the control corresponding to the point (-Xo, -Yo) • D. 

The solution we have constructed was obtained for initial data (1.8), which presume that z(0) = 0. 
The general case of initial data 

x(0) = x 0, y(0) = Y0, z(0) = z0 (4.1) 

is reduced to that considered above if at time t = 0 we change z by a jump, equating it to zero, which 
is admitted by restrictions (1.7). Thus, the solution constructed above is suitable for the case of general 
initial data (4.1). 

In that case, however, it loses the property of time-optimality. 
This work was financially supported by the Russian Foundation for Basic Research (99-01-00258) 
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